INFORME DE LA INTERVENCIÓN ARQUEOLÓGICA DE URGENCIA EN EL PUENTE DE ARROYO PEDROCHES (CÓRDOBA)

EDUARDO FERRER ALBELDA (1)

Resumen: Las actividades arqueológicas previstas en el Proyecto de Restauración del puente sobre el arroyo de Pedroches han consistido en la realización de cuatro sondeos arqueológicos para documentar la cimentación y el relleno del puente, la lectura estratigráfica de paramentos para conocer las distintas fases constructivas del monumento, y la limpieza de otras estructuras relacionadas con el puente.

Abstrat: The archaeological activities planed in the Restoration Proyect of the bridge over the Pedroches' stream have consist of the realization of four archaeological drillings in order to document the foundation and the filling of the bridge, the reading of vertical stratigraphy, and the cleaning of other structures related with the bridge.

I. INTRODUCCIÓN

El Proyecto de Restauración del Puente Romano Arroyo Pedroches (2) se ha incluido dentro del Convenio de Cooperación entre la Consejería de Cultura y Medio Ambiente de la Junta de Andalucía y el Excmo. Ayuntamiento de Córdoba para la conservación y restauración de inmuebles pertenecientes al Patrimonio Histórico de Córdoba.

La elaboración de un proyecto de restauración en dicho puente, designado con la calificación legal de Monumento Nacional incoado, se hizo necesaria por una serie de circunstancias que hacían peligrar la conservación no sólo del monumento en sí sino también su propia significación y función histórica y su relación con el entorno inmediato. Por un lado, el puente había quedado aislado en la vaguada que origina el arroyo de Pedroches por el crecimiento urbanístico de Córdoba en los últimos años, cuyo límite está justo en este sector. La carretera nacional N-432 Granada-Badajoz por el norte, la línea de ferrocarril y AVE Córdoba-Madrid por el sur, un terraplén originado por un polígono industrial (PP-12) en el oeste, y el tramo de carretera que une la N-432 con la Autovía de Andalucía por el este, habían desposeído al edificio de su función primigenia, que era precisamente la comunicación entre Córdoba y la sierra.

Por otro lado, la construcción presentaba numerosas patologías, si bien según los informes técnicos no peligraba la estabilidad del conjunto. Existían movimientos en las tres bóvedas, de las que habían desaparecido algunas dovelas, las pilas de los arcos estaban desgastadas, con la desaparición de algunos sillares y de uno de los tajamares, y parte del pretil (sobre todo en la fachada noroccidental) se había derrumbado. Además, la vía del puente presentaba un notable desgaste en el trasdós de las dovelas de los tres arcos, hasta el punto de que en algunos puntos la sección de la bóveda era más delgada de lo aconsejable.

Por último, habría que sumar la incidencia de la vegetación en el deterioro del puente, visible sobre todo en el profundo enraizamiento de hiedras, zarzas e higueras, una de las cuales había desplazado tres sillares de uno de los arcos laterales (3).

II. DESCRIPCIÓN Y ANTECEDENTES

El puente sobre el arroyo de Pedroches constituye uno de los monumentos más señeros, y a la vez desconocidos, de Córdoba.

A pesar de la perduración de su función como vía de comunicación prácticamente hasta nuestros días, y de la relativa buena conservación de sus estructuras, ha sido un edificio poco estudiado, siempre inserto en estudios genéricos de puentes o de vías romanas. Como consecuencia, los estudios realizados hasta la fecha se han centrado básicamente en hipotetizar sobre la cronología de la edificación según la edilicia empleada (4), o sobre la relación del monumento con la *Via Augusta* y con la vía *Item a Corduba Emeritam* (5).

Las descripciones más completas del puente sobre el Arroyo de Pedroches son las realizadas recientemente por P. Silliéres (6) y J.M. Bermúdez (7), si exceptuamos la llevada a cabo por los arquitectos F. Daroca y J. Díaz, autores del Proyecto en el que se incluye nuestra intervención arqueológica. A todas ellas nos remitimos para el análisis de los aspectos técnicos y arquitectónicos; en este apartado solamente expondremos el estado actual de la cuestión.

El edificio previo a la restauración constaba de tres arcos de medio punto y tablero con rasante a dos vertientes (FIG. 2). En el cuerpo inferior, pilas, estribos y en el arco central se emplearon sillares de piedra arenisca de módulo homogéneo (opus quadratum); y en los sillares del intradós de los arcos y de las pilas se utilizó el facetado-biselado triangular (8). Aguas arriba, las pilas se protegieron con tajamares de planta semicircular, y no triangular como erróneamente describen todos los autores. Aguas abajo, la construcción romana no debió tener, en principio, espolones, aunque posteriormente se le añadió un contratajamar de sección rectangular. Los arcos laterales, a diferencia del central, presentan dovelas trapezoidales de gran longitud, con excepción del extradós del arco occidental aguas abajo que está construido con ladrillos. Por último, el pretil está erigido con mampuesto de piedras de mediano tamaño calzadas con ripio, recubierto en parte con un mortero de cal y árido grueso, y coronado con un sardinel. Toda la construcción está cubierta con reparaciones de ladrillos (FIG. 2).

Se acepta de manera general que el puente es el resultado de sucesivas remodelaciones de una construcción original romana, de época augustea, de la que sobreviviría el cuerpo inferior de sillares, las pilas, parte de los estribos y el arco central. Un segundo momento se correspondería con la intervención islámica de época califal, que actuó solamente en los arcos laterales; y una tercera fase, de época moderna indefinida (siglos XVIII-XIX), se concretaría en el pretil y en todas las restauraciones superficiales (9).

El origen romano del viaducto sólo ha sido puesto en duda por Pavón (10), para quien el empleo de dovelas engatilladas puede ser un indicio de fábrica islámica. Este mismo argumento es utilizado por otros autores para destacar el arcaísmo de la construcción, que remitiría a la época augustea (11), o, de manera genérica, a época imperial romana (12).

El otro aspecto analizado es la relación entre el puente y la red viaria romana y medieval a la que perteneció. Tampoco hay unanimidad en este tema, pues, aunque todos los autores coinciden en que formó parte del recorrido de la vía *item Corduba Emeritam* (13), otros argumentan que también pudo servir de paso para la *Via Augusta* en dirección hacia Cástulo (Linares, Jaén), separándose ambos caminos una vez cruzado el puente (14). P. Sillières (15) es de esta opinión, y atribuye la ubicación de dos inscripciones viarias conservadas en la mezquita cordobesa -una de época augustea (2 a.C.) (16) y otra de Tiberio (35-36 a.C.) (17)- a las inmediaciones del puente sobre el arroyo de Pedroches.

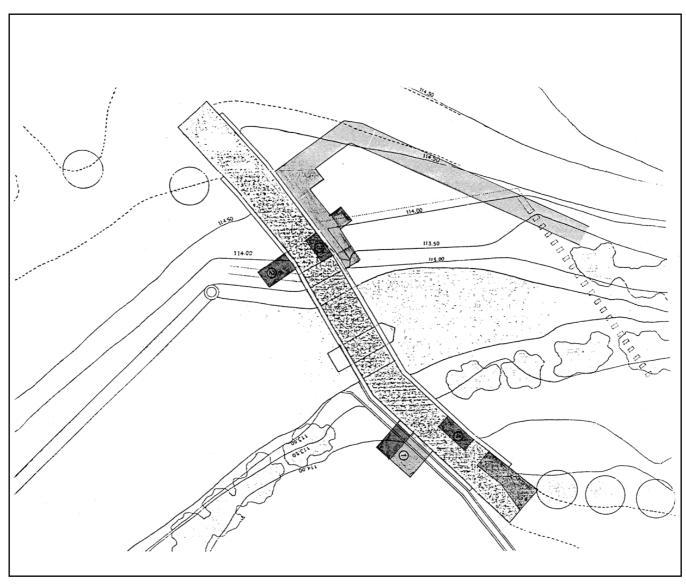


FIG. 1. Puente de Arroyo de Pedroches. Situación de los cortes estatigráficos

Un último aspecto que recientemente se ha relacionado con el puente es el trazado de un acueducto romano -la supuesta *Aqua Nova Domitiana Augusta* (18)- receptor de las aguas de la sierra oriental de Córdoba. Según la hipótesis de A. Ventura (19), este acueducto tendría cuatro ramales diferentes que se unían en uno solo en las inmediaciones del puente, al que salvaría a través un sifón situado bajo el arco occidental.

III. INTERVENCIÓN ARQUEOLÓGICA

Antes de acometer la consolidación y restauración del puente, el Proyecto de Restauración tenía previsto la realización de intervenciones arqueológicas puntuales para solucionar aspectos que no estaban claros y corroborar algunas hipótesis, como por ejemplo las características del relleno de la vía o el recorrido del *Aqua Nova Domitiana Augusta*. En estos puntos concretos se ha centrado nuestra intervención arqueológica.

III.1. Metodología

Tanto por las características del puente y de su entorno como por las necesidades y objetivos del proyecto, se ha hecho aconsejable compaginar tres tipos de actuación: 1. Cortes estratigráficos. Se ha proyectado un total de cuatro cortes estratigráficos para estudiar aspectos técnicos de la construcción romana (zanja de cimentación, rellenos de la vía, técnica edilicia, límites de la construcción, etc.), las relaciones estratigráficas de las fases romana, medieval y moderna, los fenómenos de sedimentación que han afectado al puente, y la relación de éste con el acueducto romano (*FIG. 1*).

La excavación se ha llevado a cabo mediante el llamado "método Harris", cuyo fundamento es el registro de los estratos naturales que forman el yacimiento arqueológico, con la distinción de unidades estratigráficas de deposición, estructuras e interfacies. El registro arqueológico se ha realizado mediante una ficha individualizada por cada unidad estratigráfica en la que se recogen todos los datos (características, dimensiones, relaciones estratigráficas, etc.). Asimismo, hemos contado con fichas de registro del material arqueológico, de muestras, y de archivo fotográfico.

2. Análisis estratigráfico de alzados. El mismo "método Harris" se ha aplicado a la lectura de paramentos, también conocida como estratigrafía vertical. Se ha pretendido con ello definir las distintas fases e interfacies de la edificación, así como las características de cada una de ellas, todo ello registrado en fichas individualizadas similares a las anteriores. El puente ha sido dividido en tres sectores (occidental, central y oriental) por cada fachada (norte y sur) y un sector más por cada arco, en total nueve sec-

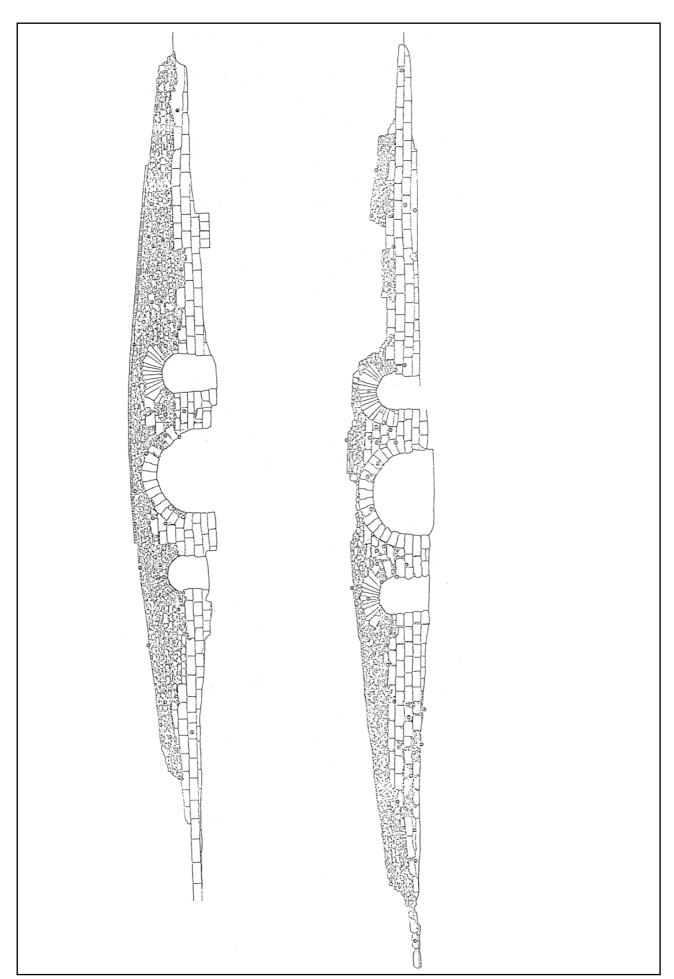


FIG. 2. Puente de Arroyo de Pedroches. Fachada sur (arriba) y fachada norte.

tores. No obstante, la numeración de las unidades estratigráficas se ha hecho de manera correlativa.

- 3. Limpieza de estructuras. Las condiciones de sedimentación en los alrededores del puente ha hecho prever este tipo de actuación en el que no está previsto el registro arqueológico exhaustivo.
- 4. Documentación histórica. Para el estudio de la fase moderna del puente ha sido preciso consultar toda la documentación referente al edificio y a las estructuras relacionadas con el mismo que se custodia en el Archivo Municipal de Córdoba.

III.2. Cortes estratigráficos (FIG. 1)

Corte 1 (FIG. 3)

El planteamiento del corte 1 responde a dos objetivos básicos: primero, comprobar la localización de una acequia que, hipotéticamente, discurriría paralela a la fachada suroriental del puente (aguas abajo), cuyo cauce había sido recientemente desviado hacia la fachada nororiental del puente, y en segundo lugar, documentar la zanja de cimentación del puente y valorar la sedimentación que ha afectado al edificio desde su construcción.

El lugar escogido para el corte ha sido el flanco suroriental porque era el que tenía, en apariencia, mayor potencia estratigráfica y menos acumulación de basuras recientes. Presentaba además una especie de zanja o rehundimiento del terreno paralelo a la edificación que podía identificarse con la hipotética acequia. Vistas estas circunstancias, proyectamos un corte de 5x4 metros, tomando como uno de los lados mayores la fachada del puente. Por razones de tiempo, pronto hubo que reducir el corte a un rectángulo de 4x2 metros (*FIG. 3*).

Las cuatro primeras unidades estratigráficas deposicionales (UE 1, 2, 3 y 4) las constituyen sendos estratos de sedimentación contemporáneos, el primero de basuras y escombros, y los restantes de tierra de labor procedente de la huerta vecina, que llega prácticamente hasta el puente. Las UE 5 y 6 se corresponden respectivamente con una zanja contemporánea con sección en forma de cuarto de círculo, y con el relleno de ésta. Este cauce, que no tiene más infraestructura que la zanja excavada en la tierra, acogió ocasionalmente las aguas de la acequia y fue rellenada muy recientemente con basuras y escombros. La zanja cortó un estrato (UE 7) formado por tierra de labor que contenía grandes piedras, fragmentos de tejas y de mortero de cal, atribuibles con toda probabilidad a la última fase de restauración del puente (hacia 1871), en la que se habrían utilizado como material (*FIG. 3*).

Las UE propiamente romanas son la UE 12, que es la zanja de cimentación del puente excavada sobre el terreno geológico (UE 10 y UE 13); la UE 9, correspondiente a la tierra extraída de la zanja y depositada junto a ésta; la UE 0 (puente romano); y la UE 11, que es el relleno de la zanja de cimentación (*FIG. 3*). No pudimos excavar por debajo de ésta porque inmediatamente afloró el nivel freático.

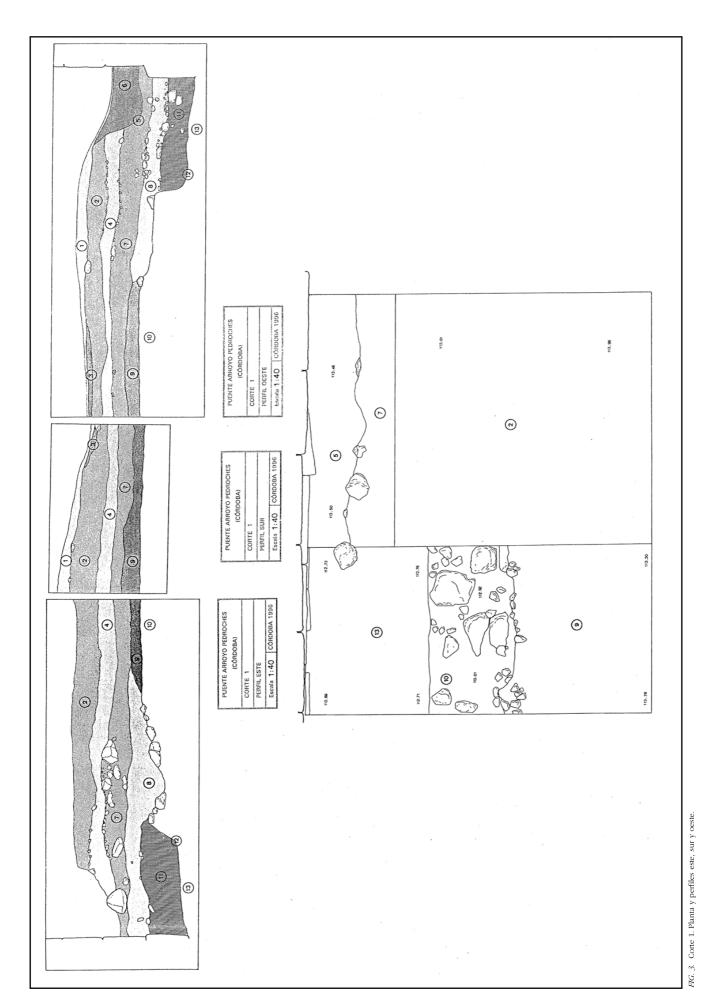
Mediante la lectura estratigráfica del corte 1 se puede reconstruir el proceso inicial de edificación del puente: elegido el lugar del vado para su construcción, se excavó en la grava del río una zanja en forma de artesa de unos 40 cms. de profundidad y 160 cms. de anchura a partir del muro. La primera hilada de sillares se dispuso a tizón, constituyendo una pequeña zapata, y sobre ésta se superpusieron las restantes hiladas a soga. La zanja de cimentación se rellenó posteriormente con sedimento arcilloso.

Los datos cronológicos relativos aportados por el corte estratigráfico, independientemente de la cronología atribuida habitualmente a la construcción, que la sitúa en época augustea, son significativos. Se han registrado dos fragmentos de TSH con formas reconocibles, una Drag. 37 con friso superior burilado y decoración vegetal (en la UE 9); y un fragmento de Drag. 24/25, en el relleno de la zanja de cimentación. El resto de los fragmentos cerámicos se corresponden con formas de cerámica común cronológicamente poco significativas. Estos datos parecen indicar que la construcción del puente no debió ser anterior a las primeras producciones de TSH, atribuidas éstas en el taller de Andújar al período de Tiberio-Claudio (20).

Corte 2 (FIG. 4)

El planteamiento del corte 2, situado junto a uno de los arcos laterales, en el flanco suroccidental del puente, tuvo como principales objetivos: 1) la localización del supuesto acueducto que discurriría por debajo del arco y del que, al menos en apariencia, quedaban señales evidentes en superficie, y 2) el estudio de su relación con el puente.

El corte previsto tenía unas dimensiones de 4x2 metros, tomando como lado menor la pared del puente, si bien una vez emprendida la excavación hubo de ampliarse hasta la orilla del arroyo para completar la planta de las estructuras. La excavación en este sector no ha proporcionado datos relativos al *Aqua Nova Domitiana Augusta* pero sí a una acequia moderna, que era la que discurría por debajo del arco lateral y de la que quedaban algunos restos. Esta canalización de riego (UE 5) estaba construida con sillares rectangulares de arenisca, probablemente reutilizados de una construcción más antigua, trabados con barro y cantos, y calzados con una zapata de cantos y piedras irregulares (UE 11). El suelo de la canalización estaba fabricado con ladrillos. La estratigrafía no ha aportado ningún dato relativo a la cimentación de la acequia, que parece que se construyó directamente sobre el terreno geológico (UE 12).


Recientemente, esta acequia, de la que tenemos constancia al menos desde 1885, se puso de nuevo en uso, restituyéndose partes de ésta que estaban en mal estado mediante una estructura de hormigón de sección semicircular (UE 3) adaptada al antiguo trazado. Su utilización perduró hasta la década de los noventa del presente siglo, cuando fue cegada por los rellenos de la vía AVE. Como consecuencia, toda la estructura fue cubierta con un potente estrato de basuras y escombros (UE 1, 2, 8 y 9).

Quizás los datos más interesantes aportados por el corte se refieran a la misma construcción del puente romano. Durante el proceso de excavación registramos una piedra de grandes dimensiones (UE 6) paralela y muy próxima a la pared del puente, que casi ocupaba la anchura del corte (FIG. 4). En un principio pensamos que podía ser una piedra arrastrada por el arroyo, cuya posición fue aprovechada por la construcción romana; pero la excavación del espacio entre la piedra y el puente, así como la limpieza de toda la fachada suroccidental, parecen indicar que la deposición de ésta y de otras grandes piedras en posición similar fue intencionada. El espacio entre las piedras y el puente, de unos 40 cms. de anchura, fue rellenado con picadura de sillar (UE 7), posteriormente apisonada, formando un bloque de extraordinaria dureza. La función de este "arrecife" de piedras paralelo al puente fue sin duda la de contrarrestar la fuerza de las aguas del arroyo durante las grandes avenidas. Este mismo fenómeno pudo ser observado en el flanco nororiental del puente, lo que puede dar una idea del esfuerzo que se invirtió en las tareas de reforzamiento de la cimentación del puente.

Corte 3 (FIG. 5)

El tercer corte previsto tenía como principal objetivo el estudio del relleno del puente. Elegimos para ello un sector próximo a uno de los arcos laterales -el occidental- donde había desaparecido el pretil y quedaba al descubierto parte del relleno. Sobre él trazamos un corte de 2,5x1,5 mtrs., dejando un espacio suficiente para el paso de peatones. No pudimos concluir la excavación del corte porque nuevamente afloró el nivel freático, pero se consiguió una potencia estratigráfica cercana a los 3 metros.

Si exceptuamos el estrato superficial (UE 1), y la zanja realizada para levantar en pretil moderno (UE 3) y su relleno (UE 2), el resto de las estratos pueden ser considerados parte integrante del relleno original romano. El estrato superficial, constituido por grandes piedras y tierra apisonada, es el resultado de la sucesivas nivelaciones para mantener viable el paso por el puente. Por su parte, en los perfiles este y oeste del corte (*FIG. 5*) puede apreciarse la zanja excavada sobre los estratos romanos superiores para levantar el pretil, aprovechando como base las últimas hiladas de sillares.

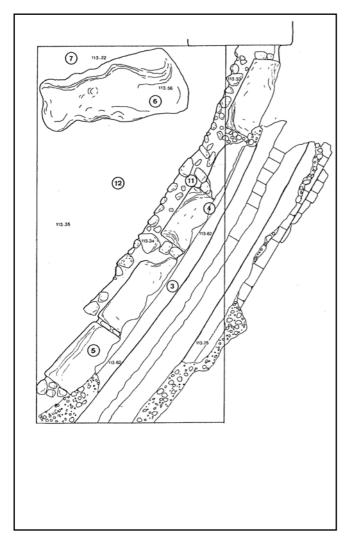


FIG. 4. Corte 2. Planta.

El relleno del puente se llevó a cabo mediante la deposición de capas alternas de diferente grosor de tres tipos de componentes: picadura de sillar, a veces mezclada con tierra, grava de río, y grandes piedras y cantos. Se utilizó siempre el material que se tenía mas a mano: la picadura de sillar extraída de la retalla de los sillares, la grava del propio arroyo, y grandes piedras y cantos rodados también procedentes del cauce. Con la intención de dotar de estabilidad al puente, los estratos inferiores fueron los de mayor potencia, alternándose la grava (UE 22 y 18) con la picadura de sillar (UE 23, 21, 19 y 17). A partir de este último estrato, la grandes piedras y cantos mezclados con grava sustituyen a la grava (UE 16, 14, 11, 9, 8 y 5), manteniéndose la alternancia con las capas de picadura de sillar (UE 15, 13, 10, 7 y 4).

La ubicación del corte sobre la unión de los muros con el pilar del arco ha posibilitado documentar también la técnica edilicia empleada. Primó ante todo la estabilidad de la construcción, posibilitada gracias a la anchura de los muros, que en la parte próxima al pilar del arco es cercana a 1,5 mtrs. Asimismo, los sillares destinados a recibir los empujes de la bóveda son de dimensiones ciclópeas (*FIG. 5*). Este problema técnico se soluciona disponiendo los sillares a soga y tizón, a diferencia del resto de la construcción que sólo emplea la soga.

También hemos podido documentar la superposición del arco califal sobre los pilares romanos, aunque no la hemos incluido como unidades estratigráficas ya que no se correspondía con la excavación propiamente dicha, sino en la retirada del relleno romano una vez finalizado el corte. No obstante, se

podrían distinguir dos estructuras, la romana y la islámica, y una unidad estratigráfica interfacial que se correspondería con la fase de preparación para la construcción del arco califal. Esta se hizo mediante dovelas dispuestas en hiladas trabadas con cal.

Los datos cronológicos aportados por el corte 3 son exiguos; sólo se han registrado algunos fragmentos cerámicos atípicos y restos de un vasito de cerámica de paredes finas.

Corte 4 (FIG. 6)

El cuarto corte previsto pretendía, por un lado, documentar el final del puente por su flanco oriental, ya que ambas fachadas presentaban restauraciones muy profundas que hacían dudar de la continuidad de la construcción romana; y por otro lado, contrastar con el corte 3 los datos relativos al relleno. Con estos objetivos, trazamos un corte rectangular de 4x1,5 mtrs. paralelo al pretil, dejando un espacio para el paso de peatones. Los resultados aportados son, en su conjunto, similares a los del corte 3, aunque presenta algunas novedades. El muro de sillares, que no finaliza, es de una gran solidez, adoptando la forma escalonada, que hace que la base del muro sea 60 cms. más gruesa que la parte superior del alzado. Probablemente en función de la estabilidad del puente está otra estructura (UE 11), no sabemos si muro o plataforma, de opus caementicium muy basto, una especie de rudus, compuesto de cantos rodados de pequeño y mediano tamaño cementados con barro. Tiene unos 30 cms. de altura y 30 cms. de anchura en el corte. La dirección que sigue es exactamente paralela al muro del puente, del que sólo los separan en su base unos pocos centímetros.

El relleno cubrió estas estructuras mediante capas alternas de picadura de sillar (UE 10 y 8), a veces acompañada de grandes piedras (UE 2), cantos, grava y arena de río (UE 13, 9, 6 y 3), y piedras irregulares de mediano y gran tamaño (UE 12, 7 y 4). Se observa la misma técnica que el corte 3, esto es, la deposición de las capas más gruesas y sin piedras en la parte inferior del relleno. Las UE 1 y 5 son sendos estratos de relleno contemporáneo cuya función es la nivelación de la vía del puente para facilitar el paso (*FIG.* 6).

III.3. Análisis estratigráfico de alzados

La lectura de paramentos ha corroborado en líneas generales las hipótesis que se habían avanzado sobre la evolución arquitectónica del puente, y que establecían tres grandes fases: una romana, otra islámica y una tercera moderna o contemporánea. No obstante, tras el estudio arqueológico se ha podido detallar qué partes del puente se incluían en cada fase, y dos subfases dentro de la tercera etapa constructiva, así como las interfacies entre cada fase y las características edilicias de cada una de ellas.

Fase romana

A esta fase corresponde todo el cuerpo de sillares, salvo algunas reposiciones puntuales, y la mayor parte del arco central. La planta del puente no es completamente uniaxial, sino que las rampas de subida aparecen giradas levemente en sentido contrario a las agujas del reloj (*FIG. 1*). Se emplea el *opus quadratum* a la *maniera romana* (21); los sillares están dispuestos a soga, con la excepción de aquellos que forman las pilas y los pilares de los arcos, que lo hacen a soga y tizón. Este sistema también se emplea para describir el zigzag del puente, ya que los sillares a tizón facilitan el cambio de orientación. En el arco central se utilizan las dovelas engatilladas, cuyo empleo, según Liz Guiral (22), "se debió a motivos estéticos más que a técnicas influenciadas por corrientes concretas".

Se construye únicamente con piedra local, que puede tener varias calidades. La de mayor dureza y consistencia se sitúa en las pilas y en pilares de los arcos, mientras que las de textura porosa, la conocida calcarenita, es empleada en las zonas más altas o donde al agua no llega.

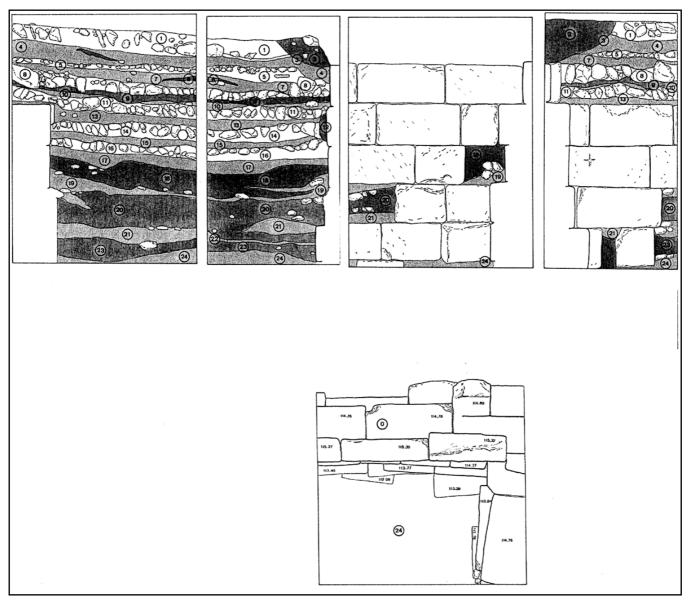


FIG. 5. Corte 3. Planta y perfiles sur, oeste, norte y este.

Fase islámica

El mal estado de conservación de los arcos laterales exigió su entera reconstrucción, prácticamente desde los pilares, en época califal (siglos X-XI). Para ello se eligió un sistema muy empleado en la Córdoba califal (puentes de Arroyo del Moro, Cantarranas y Nogales (23)): dovelas trapezoidales muy alargadas trabadas con mortero de cal, que realzaban el perfil del puente y aumentaban la anchura definitiva del arco con respecto al arco romano. Las caras vistas de los arcos alternan placas dobles con las dovelas pareadas, de manera que se soluciona un problema técnico y estético.

Fase contemporánea

Esta fase ha dejado una impronta notable en el conjunto de la construcción, a la que corresponden el pretil y el sardinel, la superficie exterior del arco suroccidental, el espolón o contratajamar y un sinfín de reparaciones superficiales que afectan especialmente a los arcos. Se conserva en el Archivo Municipal de Córdoba la documentación relativa a dos grandes reparaciones del puente durante el siglo XIX. La primera data de 1846 (24), año en

que se acometen reparaciones para solucionar el derrumbe de un estribo y parte del arco central, en la fachada sur. Dentro del presupuesto estaban previstas "18 varas cúbicas para recalzados de sillería y mampostería, en sus tajamares", "gastos de apuntalado de los arcos para reparar daños del arco del centro", etc. Con criterio de imitación de la obra romana ("300 reales por dobelas, que se harán de piedra franca y en un todo conforme a las curbas y resto de la obra"), se reponen tres dovelas del arco central, calzadas sobre el nuevo espolón o contratajamar, que también se edifica con sillares. Esta parte tiene la función de frenar el empuje de las aguas, a la vez que sostiene la pila, el estribo y los arcos del sector más dañado.

También se levanta el pretil de mampostería, para el que se destinan 1960 reales, se repara y empedra el andén y, por último, se prolonga la vía del puente en su lado oriental con bloques de *opus caementicium*, probablemente pertenecientes al acueducto romano. En el pretil se emplea fundamentalmente piedras de mediano tamaño y diversa procedencia (arenisca, pizarra, cantos, pudingas), dispuestas en hileras sucesivas trabadas con barro y mortero de cal y árido grueso, y calzadas con ripios.

Esta reparación no solucionó a medio plazo los problemas de estabilidad del puente, ya que menos de cuarenta años después,

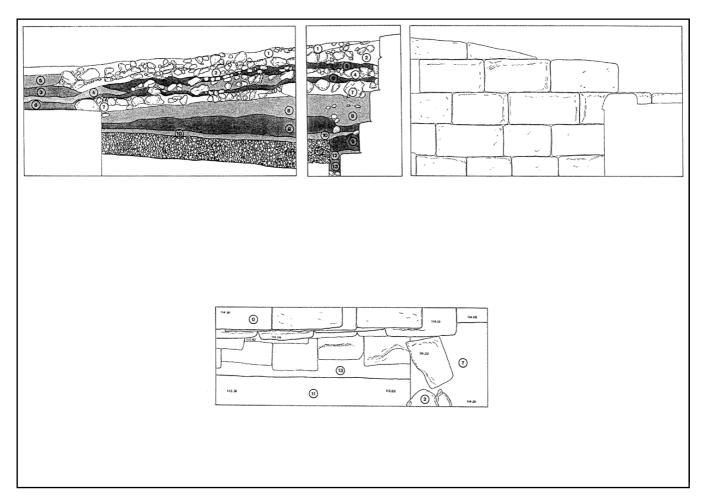


FIG. 6. Corte 4. Planta y perfiles sur, norte y oeste

en 1871 (25), los hortelanos de los alrededores solicitaron del Ayuntamiento de la ciudad una nueva reparación, que afectaba sobre todo al paso por el puente, ya que un estribo y una de las bóvedas laterales se habían derrumbado y sólo permitía el paso de una persona. La oquedad producida en la bóveda se cubrió con un sillar de grandes dimensiones calzado con grandes cantos rodados, y el resto del edificio sufrió una reparación más estética que funcional, pues se parchearon todos los sillares que presentaban oquedades o rehundimientos, las dovelas desgastadas o perdidas, partes deterioradas del pretil y la cara vista del arco suroccidental. Por último se coronó el pretil con un sardinel de ladrillos. Es característica de esta fase la utilización de ladrillos de gran tamaño (33x25x4,5 cms.).

III.4. Limpieza de estructuras

Esta tarea se ha centrado en los sectores próximos al puente que presentaban potentes rellenos modernos. No ha habido excavación arqueológica propiamente dicha, con distinción de unidades estratigráficas, porque los escombros formaban un único estrato depositado en la última década, por lo que nos hemos limitado a retirarlos. Los dos sectores de actuación han sido, por un lado, el acceso al puente de época romana por su lado oriental, que no había podido ser documentado en el corte 4, y por otro, la acequia documentada en el corte 2, que pasaba por debajo del arco lateral y discurría paralela al flanco noroccidental del puente.

En cuanto al acceso original del edificio, ha sido detectado junto con el comienzo del relleno romano, y se corresponde con el último sillar visible en la fachada nororiental (*FIG. 2*). En lo referente a la acequia, se ha excavado en gran parte de su recorrido. Las características de esta conducción de agua ya fueron

descritas en el apartado del corte 2 (fábrica de sillares, solería de ladrillos, zapata de cantos rodados, superposición de estructura de hormigón), por lo que nos limitaremos a señalar las novedades. El recorrido de la canalización parte de una presilla o azuda situada algunas decenas de metros aguas arriba del Arroyo de Pedroches. Desde aquí la canalización aflora superficialmente en algunos sectores, discurriendo paralela al cauce; sin embargo, cuando se aproxima al puente hace un quiebro hacia el suroeste, abandonando la dirección del arroyo y volviendo a girar hacia el sur para, posteriormente y mediante un ángulo de 90°, acoplarse al flanco noroccidental del puente hasta llegar al arco lateral. Desconocemos la razón de este requiebro, aunque por la contrastación de las cotas, podemos intuir que se persiguió buscar la pendiente más idónea (*FIG. 1*).

Así mismo, el recorrido de la acequia por el arco lateral del puente requirió medidas extraordinarias de protección contra las violentas avenidas del arroyo. Para ello se utilizaron como parapeto sillares de gran tamaño, e incluso se reaprovecharon bloques cuadrangulares de *opus caementicium*, pertenecientes quizás al *Aqua Nova Domitiana Augusta*. Uno de ellos fue utilizado también como cubrición o lugar de paso de la canalización, al igual que otros grandes sillares de arenisca.

Carecemos de datos cronológicos precisos sobre la construcción de esta canalización ya que ni la excavación sistemática (Corte 2), ni la limpieza de las estructuras han arrojado luz alguna. No obstante, sabemos que a finales del siglo XIX, concretamente en 1885 (26), ya existía porque aparece en los planos de la documentación relativa a las reformas de las conducciones de agua procedentes del Arroyo de Pedroches.

Queda señalar que, en el transcurso de estos trabajos de limpieza, se ha documentado en la entrada del arco lateral y debajo la acequia, un fogón de *opus caementicium* probablemente romano, constituido con grandes piedras -generalmente cantos rodados- y mortero de cal y árido grueso. El hormigón guarda las mismas características que las de otro fogón situado en la orilla opuesta del arroyo, que tiene la misma orientación. Probablemente, estos fogones correspondan a la cimentación de la *arcuatio* con la que el *Aqua Nova Domitiana Augusta* cruzaba el arroyo en dirección a *Corduba* (27). Estos serían los únicos restos del acueducto conservados *in situ*, a los que habría que añadir los bloques cuadrangulares que se han reutilizado en la restauración del puente y en la protección de la acequia.

IV. CONCLUSIONES

Gran parte de las conclusiones ya han sido expuestas en los apartados correspondientes, por lo que aquí nos referiremos exclusivamente a los aspectos generales.

1) En lo referente al proceso de construcción del puente, éste se erigió sobre una zanja de cimentación realizada en el terreno geológico. Los muros se levantaron a ambos lados y el espacio intermedio se rellenó con tierra y piedra de manera alterna, conservándose actualmente el relleno romano en su práctica totalidad. La cronología de la construcción romana puede atribuirse a época post-augustea, como pronto a la tercera década del siglo I según los fragmentos cerámicos extraídos de la zanja de cimentación. Es posible que con anterioridad a la edificación del puente existiera un vado o una construcción menos sólida que sirviera de paso para la vía *item Corduba Emeritam*, construida en época de Augusto. Con posterioridad, quizás en época de Tiberio o Claudio, pero con anterioridad a Domiciano, se alzaría el puente. Esta

explicación puede justificar el hecho de que existan dos inscripciones viarias prácticamente iguales (ubicadas hipotéticamente por Sillières (28) juntas y en las cercanías del puente-), una del año 2 a.C. y otra del 35-36 de la Era.

La datación del puente en los últimos años tiberianos concuerda bien con la política viaria desarrollada durante su mandato en la Península Ibérica, que afectó notoriamente a la Bética (29).

- 2) Con respecto a las características técnicas del edificio romano, se persiguió en todo momento su funcionalidad y estabilidad. El empleo de sillares ciclópeos, la anchura de los muros, sobre todo en su base, y de las pilas, la solución técnica dada al arco central, que descansa sobre los laterales, así como el potente relleno y el reforzamiento de la estructura con "arrecifes" de piedras y rellenos de picadura de sillar, dan una idea de los esfuerzos invertidos en la seguridad del viaducto.
- 3) Esta estabilidad ha asegurado la continuidad de su función prácticamente hasta nuestros días. Mediante la documentación arqueológica y la depositada en el Archivo Municipal de Córdoba ha sido posible reconstruir con verosimilitud el proceso de transformación arquitectónica de la edificación, definiéndose tres grandes períodos -romano, islámico y contemporáneo- y las partes que se corresponden con cada fase. Las dos primeras pueden considerare plenamente constructivas, mientras que la última, en sus dos subfases, sería de reparación, aunque ha dejado una impronta indeleble.
- 4) En último lugar, en nuestra opinión parece confirmarse la hipótesis de A. Ventura que sitúa el *Aqua Nova Domitiana Augusta* en las inmediaciones del puente, al que salvaría mediante un sifón situado en el arco occidental. En época contemporánea se construyó una acequia de riego que parte de una azuda cercana y que curiosamente también discurre por debajo del mismo arco.

Notas

- (1) Departamento de Prehistoria y Arqueología de la Universidad de Sevilla
- (2) Expediente BC3A004.14HP de la Consejería de Cultura.
- (3) La valoración de las patologías del puente está extraída del Proyecto de Restauración del Puente Romano Arroyo Pedroches, realizado por los arquitectos Dr. Francisco Daroca y Dr. José Díaz, a quienes agradecemos las facilidades dadas durante todo el proceso de estudio.
- (4) C. Fernández Casado, *Historia del puente en España. Puentes romanos*, Madrid, 1981; B. Pavón Maldonado, *Tratado de arquitectura hispano-musulmana. I. El agua*, Madrid, 1990; P. Sillières, *Les voies de communication de L'Hispanie meridional*, Paris, 1990; L. Roldán Gómez, "Construcciones de *opus quadratum* en Córdoba", *AAC*, 3 (1992) 253-275; J.M. Bermúdez Cano, *Estudio arqueológico de los puentes cordobeses*, Memoria de Licenciatura, Universidad de Córdoba, 1994.
- (5) P. Sillières, op. cit. n. 4; R. Corzo Sánchez y M. Toscano San Gil, La vías romanas de Andalucía, Sevilla, 1992, p. 118; J.M. Bermúdez Cano, "La trama viaria propia de Madinat Alzahra' y su integración con la de Córdoba", AAC, 4 (1993), pp. 259-294; E. Melchor Gil, Vías romanas de la provincia de Córdoba, Córdoba, 1993.
- (6) Op. cit. n. 4, pp. 681 ss.
- (7) Op. cit. n. 4, pp. 27 ss.; ibid., "El puente viejo sobre el arroyo Pedroche", Arte, Arqueología e Historia, 6 (enero 1999), pp. 73-79.
- (8) L. Roldán Gómez, op. cit. n. 4, p. 262.
- (9) J. Bermúdez Cano, op. cit. n. 4, pp. 29-37; ibid., op. cit. n. 5, pp. 108-109.
- (10) Op. cit. n. 4, p. 111.
- (11) P. Sillières, op. cit. n. 4, pp. 681 ss.; L. Roldán Gómez, op. cit. n. 4, p. 264; J.M. Bermúdez Cano, op. cit. n. 4, p. 108.
- (12) C. Fernández Casado, op. cit., n. 4, s.p.
- (13) L. Roldán Gómez, op. cit. n. 4, p. 264; E. Melchor Gil, op. cit. n. 5; J.M. Bermúdez Cano, op. cit. n. 4; ibid., op. cit. n. 5.
- (14) C. Fernández Casado, op. cit. n. 4, s.p.
- (15) Op. cit. n. 4, pp. 90 ss.
- (16) CIL II, 4701.
- (17) CIL II, 4712.
- (18) A. von Stylow, "Acueductos romanos de Córdoba", Corduba Archaeologica, 13 (1982-83), pp. 35-41; ibid., "Apuntes sobre epigrafía de época flavia en Hispania", Gerión, 4 (1986), pp. 285-311.
- (19) A. Ventura Villanueva, "Los acueductos de *Colonia Patricia Corduba*", *Actas del XIV Congreso Internacional de Arqueología Clásica*, Tarragona, 1995, pp. 52-53; *ibid.*, *Análisis de la Córdoba romana a través del ciclo del agua*, Tesis doctoral, Universidad de Córdoba, 1996.
- (20) Mª.A. Mezquiriz Irujo, "Cerámica Sigillata Hispánica. Historia y criterios tipológicos", *Boletín del MAN*, I-2 (1983) pp. 123-131; M. Roca Roumens, "El centro de producción de TSH de Andújar" *Boletín del MAN*, I, 2 (1983) pp. 159-164. Últimamente, M. Sotomayor, M. Roca y Mª.I. Fernández, "Centro de producción de Los Villares, Andújar (Jaén)", *Terra Sigillata Hispanica. Centros de fabricación y producciones altoimperiales. Homenaje a Mª. Angeles Mezquíriz*, Granada 1999, p. 32.
- (21) G. Lugli, La tecnica edilizia romana con particolare riguardo a Roma e Lazio, Roma, 1957, p. 181; L. Roldán Gómez, op. cit. n. 4, p. 264.
- (22) Puentes romanos del convento jurídico caesaraugustano, Zaragoza, 1985, p. 29.
- (23) J.M. Bermúdez Cano, op. cit. n. 4, p. 38.
- (24) Archivo Municipal de Córdoba: Expediente relativo a la reparación del puentecillo del Arroyo de Pedroche. C-105, documento 64.
- (25) Archivo Municipal de Córdoba: Expediente relativo a la reparación del puentecillo del Arroyo de Pedroches que existe junto a la huerta de las capillas del pago de la Fuensanta. C-105, documento 66.
- (26) Archivo Municipal de Córdoba: Expediente relativo al proyecto de sustitución del acueducto del manantial de Pedroches, conocido por el de la Palma, con tubería de hierro. Caja 272.
- (27) A. Ventura Villaueva, op. cit. n. 19.
- (28) P. Sillières, op. cit. n. 4.
- (29) G. Chic García, "Economía y política en la época de Tiberio. Su reflejo en la Bética", Laverna, II (1991), pp. 126 ss